Telephone based speaker recognition using multiple binary classifier and Gaussian mixture models
نویسندگان
چکیده
The present study evaluates MBCM and GMM solutions for both ASV and ASI problems involving text-independent telephone speech from the King speech database. The MBCM's accuracy is enhanced by selectively removing those classi ers within the model which perform worst (pruning). An unpruned MBCM outperforms a GMM for ASV and speakers taken from within the same dialectic region (San Diego, CA). Once pruned, the MBCM is found to be 2.6 times more accurate than the GMM. For closed set ASI, based on the same data, the MBCM is roughly twice as accurate as the GMM but only after pruning.
منابع مشابه
A Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملProbabilistic Neural Networks Combined with Gmms for Speaker Recognition over Telephone Channels
In this paper we study the applicability of Probabilistic Neural Networks (PNNs) as core classifiers to medium scale speaker recognition over fixed telephone networks. In particular, banking applications with up to 400 enrolled speakers and short training times are targeted. Two PNN-based open-set text-independent systems for Speaker Identification and Speaker Verification correspondingly are p...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملRobust text-independent speaker identification using Gaussian mixture speaker models
This paper introduces and motivates the use of Gaussian mixture models (CMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are efTective for modeling speaker identity. The focus of this work is on applications which require high identification rates using short utterance ...
متن کاملSpeaker Identification Using Gaussian Mixture Models
In this paper, the performance of Perceptual Linear Prediction (PLP) features has been compared with the performance of Linear Prediction Coefficient (LPC) features for speaker identification. Two classification techniques, Gaussian Mixture Models (GMM) and Vector Quantization (VQ) with Dynamic time wrapping (DTW) are used for classification of speakers based on their speech samples into respec...
متن کامل